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Abstract

This article describes the design and the realization of the Zeeman
slower in the frame of a new setup for the continuous-wave atom laser
experiment at ENS Paris.

A beam of 87Rb atoms coming out of a recirculating oven is collimated
and slowed down to 20 m/s by an increasing field Zeeman slower. The
resulting flux of the order of 1011 at/s is used to load a magneto-optical
trap. After capturing in a magnetic trap, the cold atoms are injected
into a magnetic guide.
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1 Introduction

A spectacular challenge in the field of Bose-Einstein condensation is the achieve-
ment of a continuous beam operating in the quantum degenerate regime. This
would be the matter wave equivalent of a CW monochromatic laser and it would
allow for unprecedented performance in terms of focalization or collimation. In [1],
a continuous source of Bose-Einstein condensed atoms was obtained by periodically
replenishing a condensate held in an optical dipole trap with new condensates. This
kind of technique raises the possibility of realizing a continuous atom laser. An
alternative way to achieve this goal has been proposed and studied theoretically in
[2]. A non-degenerate, but already slow and cold beam of particles, is injected into
a magnetic guide where transverse evaporation takes place. If the elastic collision
rate is large enough, an efficient evaporative cooling leads to quantum degeneracy
at the exit of the guide. This scheme transposes in the space domain what is usu-
ally done in time, so that all operations leading to the condensation are performed
in parallel, with the prospect of obtaining a much larger output flux.

The condition for reaching degeneracy with the latter scheme can be formulated
by means of three parameters: the length � of the magnetic guide on which evapo-
rative cooling is performed, the collision rate γ at the beginning of the evaporation
stage, and the mean velocity vb of the beam of atoms. Following the analysis given
in [2], one obtains

Nc ≡ γ�

vb

> 500 . (1.1)

If the collision rate γ is constant over the cooling process, which is approximately
the case for realistic conditions, this means that each remaining atom at the end
of the guide has undergone Nc elastic collisions during its collisional propagation
through the magnetic guide.

Some conclusions can already been drawn from the inequality (1.1). One needs
to operate in a long magnetic guide, at very low mean velocity, and the collision
rate should be as high as possible at the beginning of the evaporation. The criterion
(1.1) can be recast in terms of the temperature T , the incoming flux φ, and the
strength λ of the linear transverse confining potential: Nc ∼ φλ2v−2

b T−3/2. We
consequently need to start with a large incoming flux at low velocity and at very
low temperature.

In our new experimental setup we have implemented a Zeeman slower in order
to increase the initial flux. The Zeeman slower permits to slow down a beam of
atoms obtained from a collimating oven. It is used to load very efficiently a huge
number of atoms into a magneto-optical trap [3]. The obtained clouds are further
cooled and injected into a 4.5 m long magnetic guide [4].

The following text is structured as follows: In section 2, I recall some useful
theoretical results to describe the physics of the Zeeman slower. The third section
is devoted to the design and simulation of the slower. Section 4 deals with the

1



Section 1: Introduction

practical implementation. Section 5 describes the atomic beam source for the
Zeeman slower, a new implemented recirculating oven. In Section 6 I review the
techniques to measure the atomic flux and other characteristics of the slower and
present our results. Finally, the article is concluded with a summary of this work
and a short outlook.
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2 Theory of Zeeman tuned slowing

There are various techniques to slow and cool atomic beams [5]. Zeeman tuned
slowing is the best known and is in most applications very efficient [6] and advan-
tageous when compared with other methods like chirping [7] or broadband cooling
[8, 9].

In this section I summarize the physics of the Zeeman slower. Important for-
mulas to understand how such a slower works are introduced.

2.1 Radiation pressure

The elementary principle of cooling atoms with laser light is the momentum conser-
vation when an atom scatters a photon. Consider a two-level atom in its ground
state moving in one direction and a counter-propagating light beam with wave
vector k. By absorbing resonant photons out of the beam the atom inherits their
momentum −�k (k = |k|) and is decelerated. The excited atom can then sponta-
neously emit a photon and fall back into the ground state. Spontaneous emission
again induces a momentum change of �k. However, averaged over many absorp-
tion/emission cycles it does not contribute to any deceleration of the atom since
it is equiprobable in two opposite directions.

As a consequence of the spontaneous emission, the transverse velocity com-
ponents of the atomic beam increase owing to transverse heating, affecting the
collimation of the atom beam. This point is treated in detail in the next para-
graph.

To slow a beam of 87Rb atoms by an amount of ∆v = 350 m/s, for instance,
each of them would need to absorb N = m∆v

�k
≈ 62000 photons, where m is the

mass of one atom. The dissipative force acting on the atom is derived from the
optical Bloch equations and is given by

F = �k
Γ

2

s

s + 1
, (2.1)

where

s =
I/I0

Γ2 + δ2/4
(2.2)

is the saturation parameter and Γ the natural linewidth of the transition. I/I0 is
the laser beam intensity in units of the saturation intensity, δ the detuning of the
laser from the transition’s resonance frequency. F is called spontaneous force and
its action on the atoms radiation pressure [10].

For high light intensities and low detunings, the value of s becomes high. The
maximal spontaneous force is given by the limit s → ∞:

Fmax = mamax = �k
Γ

2
. (2.3)
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Section 2: Theory of Zeeman tuned slowing

This illustrative result states that an atom cannot absorb and subsequently emit
spontaneously more than one photon every twice its lifetime, for in steady state it
stays a duration of τ = 1/Γ in each, the ground and the excited state. Stimulated
emission causes a momentum transfer to the atom of the opposite sign than for
absorption and thus does not contribute to slowing.

2.2 Transverse heating of a slowed beam

As mentioned above, the random nature of the spontaneous emission leads to
transverse heating when an atomic beam is slowed by a counter-propagating light
beam [11]. To get a quantitative idea, we denote vi the initial longitudinal velocity
and vf (t) the final longitudinal velocity reached after a time t of the atomic beam.
The number N(t) of photons absorbed from the laser beam between t = 0 and t is

N(t) =
vi − vf (t)

vrec

, (2.4)

where vrec = �k/m is the atom’s recoil velocity. The mean square values of the
transverse velocity components vx,y are given by

〈v2
x,y(t)〉 = α

v2
rec

3
N(t). (2.5)

This formula reflects the atom’s random walk in velocity space due to spontaneous
emission. The factor α = 9/10 accounts for the dipole pattern. Its contribution is
negligible, and we will deal with the isotropic case. It is easy to check that for the
emission of one single photon one has 〈∆v2

x〉 = v2
rec/3.

Usually vf 	 vi, and thus vi − vf ≈ vi =
√

9πkBT/8m ∝ m−1/2 for an atomic
beam emerging from an oven (see appendix A.3). On the other hand we have
vi − vf (t) = N(t)�k/m, and it follows that N(t) ∝ √

m. From eq. (2.5) we then
deduce the scaling vx,y ∝ m−3/4 with the atomic mass. Therefore, the problem of
transverse spreading is more pronounced for lighter atoms.

We intend to calculate the mean value of the transverse displacement x(t) of an
atom after a time t. Each spontaneous emission event occurring at a time tk < t
causes a velocity change of (∆vx)k:

x(t) =
∑

k

(∆vx)k(t − tk). (2.6)

This sum consists of t/∆t = N(t) terms, where ∆t is the mean time between two
successive events. Using 〈tk〉 = t/2, 〈t2k〉 = t2/3 and the fact that different events
are uncorrelated, one receives

〈x2(t)〉 =
v2

rec

3

t3

3∆t
=

v2
rec

3
N(t)

t2

3
. (2.7)
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Section 2: Theory of Zeeman tuned slowing

As an example, atoms slowed by an amount of vi−vf = 350 m/s over a distance
of 1.1 m acquire a rms-velocity of about 85 cm/s or a rms-displacement of about 3
mm in the transverse direction. Once the atoms have reached their final velocity
and are out of resonance with the decelerating light beam the effect of divergence
becomes very important. For the same characteristics as above and a final velocity
vf = 15 m/s, the relative transverse velocity of an atom takes a non-negligible
value of ∆vx,y/vf = 5%. This effect can be reduced by transverse cooling of the
atomic beam, as explained later.

2.3 Doppler effect

Moving atoms see the frequency of a light wave shifted by an amount proportional
to their velocity. The Doppler shift makes the spontaneous force dependent on the
atoms velocity via the detuning δ which reads

δ = δ0 − k · v, (2.8)

where δ0 = ωlaser − ωatom is the detuning of the laser frequency ωlaser from the
zero-field, zero-velocity atomic resonance ωatom. For a fixed δ0 and a given laser
beam intensity I, the spontaneous force will decrease during deceleration because
the atom gets more and more out of resonance with the laser light due to the
Doppler shift. After having absorbed N = 2000 photons, the effective detuning
has changed by an amount ∆δ = kN�k

m
= 2.5Γ away from resonance. The simplest

method of slowing an atom beam, by opposing it a laser beam with frequency
νatom = 1

2π
ωatom, is thus very inefficient.

2.4 Zeeman effect

In the method of Zeeman slowing the Doppler shift of moving atoms with respect to
resonance with the laser light is compensated by the energy shift due to an external
magnetic field. The Zeeman Hamiltonian for an Alkali atom in an static external
magnetic field B is obtained by minimal substitution of the momentum operator
[12]. Neglecting the diamagnetic term the B-dependent part of the Hamiltonian
can be written as

ĤZ = (L̂ + gŜ)
µB

�
B + gI Î

µN

�
B, (2.9)

where g ≈ 2 (gI) is the electronic (nuclear) gyromagnetic factor, and µB (µN)
the Bohr (nuclear) magneton, respectively. The quantization axis is chosen along
the direction of B. In the case of low fields (< 105 G) and heavy atoms ĤZ is
much smaller than the spin-orbit interaction ∼ L̂ · Ŝ. It can then be regarded as a
perturbation to the fine structure Eigenstates |L, S, J,MJ , I,MI〉. Here J denotes
the total electronic angular momentum, I the nuclear spin and MJ and MI their
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Section 2: Theory of Zeeman tuned slowing

corresponding components along the quantization axis. Consequently the Zeeman
shift in the fine structure is given by the following expectation value of ĤZ :

∆E = 〈L, S, J,MJ , I,MI |ĤZ |L, S, J,MJ , I,MI〉 = gJµBBMJ + gIµNBMI (2.10)

with the Landé factor gJ = 1+(g−1)J(J+1)+S(S+1)−L(L+1)
2J(J+1)

and B = |B|. Note that
since the nuclear contribution usually is much smaller than the electronic term it
can often be neglected.

An accurate calculation of the Zeeman effect in hyperfine structure requires the
diagonalisation of the Hamiltonian Ĥ = ĤHF +ĤZ where the hyperfine interaction
can approximatively be expressed as

ĤHF =
A

�2
Î · Ĵ =

A

2
[F (F + 1) − I(I + 1) − J(J + 1)]. (2.11)

Here F is the Eigenvalue of the operator F̂ = Î+ Ĵ. For this purpose we represent
the matrix of Ĥ in the hyperfine basis |L, S, J, I, F,MF 〉 where ĤHF is diagonal.
This is not the case for ĤZ . To obtain its matrix elements we write the basis states
as linear combinations of the fine structure states with Clebsch-Gordan coefficients,

|I, J, F,MF 〉 =
∑

MI+MJ=MF

|I,MI , J,MJ〉〈I,MI , J,MJ |I, J, F,MF 〉. (2.12)

Here the quantum numbers L and S have been suppressed for simplicity. We
then evaluate the matrix elements using (2.10). Obviously MF (but not F ) stays
a good quantum number and only states with the same MF are mixed. This
fact simplifies the calculation since the diagonlisation of Ĥ is reduced to sub-
Hilbert spaces identified by MF . The resulting Eigenenergies for 87Rb (nuclear
spin I = 3/2) in the configurations 5S1/2 and 5P3/2 are plotted in Fig. 2.1.

The transition energies at a certain field B are obtained by subtracting the
corresponding energy of the ground state from that of the excited state. The only
closed two-level transitions, |5S1/2, F = MF = 2〉 → |5P3/2, F = MF = 3〉 and
|5S1/2, F = −MF = 2〉 → |5P3/2, F = −MF = 3〉, show a linear Zeeman shift in
the transition energy:

∆E± = ±µBB, (2.13)

where the sign stands for σ+- or σ−-polarization of the coupling light, respec-
tively. To include the effect of an external magnetic field B the detuning (2.8) is
generalized to

δ = δ0 − k · v ∓ µB

�
B. (2.14)

With a field that varies adequately along the direction of the moving atoms
the Zeeman shift can compensate for the Doppler shift. That way the atoms are
”pushed back” towards resonance with the decelerating laser light during their
movement.
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Section 2: Theory of Zeeman tuned slowing
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Figure 2.1: The Zeeman splitting of the hyperfine levels of 87Rb in the 5S1/2

and 5P3/2 manifolds (the nuclear magnetic moment has been neglected). The
arrow indicates the crossing in the 5P3/2 manifold at about 120 Gauss where
the energies of the states |F = 2, MF = −1〉 and |F = 3, MF = −3〉 equal.

2.5 The magnetic field profile in a Zeeman slower

A Zeeman slower consists of a tube inside which a magnetic field is applied to shift
the energy levels of the atoms moving along the axis. With the appropriate field
profile atoms moving through the tube can be decelerated efficiently by a counter
propagating laser beam of constant frequency. To calculate this field dependence in
the slower we assume constant deceleration along the axis z of the tube, a = const
[13]. Setting δ = 0 in eq. (2.14) (resonance condition) we have v ∝ B. Resolving
z(t) = v0t + 1

2
at2 after the time t and substituting t(z) in v = v0 + at one readily

obtains a magnetic field of the form

B(z) = Bb ± B0

√
1 − 2az

v2
0

(2.15)

(a > 0), where again the sign is valid for the σ+- resp. the σ−-transition. v0

denotes the initial velocity of the atoms (capture velocity). The external B-field
defines a quantization axis and reduces the probability of optical depumping to
non-cycling hyperfine states.

At magnetic fields where two different Zeeman levels cross each other the states
are degenerated in energy. Consider for example the case of the σ− transition.
At about 120 G the cycling light may couple the |F = 2,MF = −2〉 ground
state with the |F = 2,MF = −1〉 excited state if the polarization is not perfect
(Fig. 2.1). This state lies outside the closed two-state system and can decay to
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Section 2: Theory of Zeeman tuned slowing

a |F = 1〉 ground state which leads to atom loss. A way around this problem
consists in shifting this crossing out of the region of operation by adding to the
profile constant bias field Bb > 120 G (see eq. (2.15)). The detuning δ0 of the
laser will be adapted to compensate for this shift. Furthermore, a repumping laser
beam tuned to the transition |5S1/2, F = 1〉 → |5P3/2, F = 2〉 can be used to get
atoms back which may have been optically depumped by the slowing beam. A
priori it is not clear that this really helps since such a beam is not resonant with
the atoms at any position in the slower (but only where the Doppler and Zeeman
shifts compensate the frequency detuning of the repumping light). In practice a
repumper is nevertheless useful as will be discussed in more detail in section 6.

From the corresponding sign of the Zeeman shift it is clear that B(z) must
decrease for the σ+-profile in order to slow atoms and increase for the σ−-profile.
The maximal velocity decrease of the atomic beam is given by the difference of
magnetic field between entrance and exit of the slower. For a given field, the
detuning ∆ν = δ0/2π then determines the absolute values for the capture velocity
and the final velocity of the slower. It is positive for the σ+- and negative for the
σ−-configuration. The first Zeeman slower built by Phillips and Metcalf used the
σ+-transition [14]. However, such a slower has some major disadvantage. Suppose
that the atoms are decelerated to a velocity close to 0 at a finite field value. Further
downstream atoms with still lower velocities will then be resonant with the laser
light because of the lower field. They are slowed even more and are probable to
return into the slower (negative final velocity). In an increasing field slower, on
the other hand, slow atoms get quickly out of resonance after they have passed
the maximum magnetic field at the end. The final velocity is well defined and
limited by the peak value of B. As a result, a σ−-slower loads a MOT much more
efficiently, for instance. Furthermore, it is less sensitive to fluctuations in laser
frequency and intensity than a σ+-slower [15].

It is clear that the magnetic field profile must not be designed for a value of
a > amax (compare eq. (2.3)). Otherwise the atoms will not follow the desired
deceleration determined by the slope of the field. This imposes a criterium on the
steepness of the field (2.15) along the slower axis [13]. Using eq. (2.14) we have

a =
dv

dt
= v

dv

dz
= ±µBv

�k

dB(z)

dz
, (2.16)

and |a| ≤ amax leads with λ = 2π/k and h = 2π� to the condition∣∣∣∣dB(z)

dz

∣∣∣∣ <
�kamax

µBv
=

hamax

µBλv
. (2.17)

In practice one usually works with a ≈ 2
3
amax. The criterium determines the mini-

mal required length of the slower. For example, a Zeeman slower which decelerates
87Rb atoms from 400 m/s to 0 m/s needs to be at least l = ∆v2

2amax
= m∆v2

�kΓ
= 75

cm long. Obviously, heavier atoms with longer lived excited state are harder to
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Section 2: Theory of Zeeman tuned slowing

decelerate. Of course, the required capture velocity is lower for heavier atoms,
though.

An important feature of the Zeeman slower is that the initial velocity distribu-
tion of the atoms is narrowed when they are decelerated. Because the resonance
condition for slower atoms is fulfilled at a later position in the slower, all atoms
are bunched into the same slow velocity group. It is this compression of the ve-
locity distribution in phase space which makes the difference between cooling and
slowing.

9



Section 2: Theory of Zeeman tuned slowing

10



3 Design and simulation of the slower

Our Zeeman slower was implemented in the σ−-configuration and produces, beside
the tapered field, a bias field of 250 G.

The magnetic field in a Zeeman slower is produced by a solenoid. In the process
of designing the slower a computer simulation was programmed which serves mainly
two purposes. First, we determined the currents in the solenoid wire necessary to
generate the desired magnetic field profile, and second, we simulated the motion
of the atoms in this slower profile.

3.1 Calculation of the magnetic field

To compute the magnetic field we modelled the coils if the solenoid as cylindrical
layers of a given length, each carrying a homogeneous current density. Their
thickness corresponds to the diameter of the wire which is used to wind the tube.
The bias field is realized by current layers over the entire length of the slower. The
coils to generate the tapered field are laid above these layers.

The magnetic field at a space point x produced by a static current density
distribution j(x′) is given by the law of Biot-Savart [16]:

B(x) =
µ0

4π

∫
j(x′) × x − x′

|x − x′|3d3x′ (3.1)

(SI units, µ0 induction constant). The diameter of the wires is much smaller than
the diameter of the slower tube, so that the winding helicity of the coils can be
neglected. Using the notation x′ = (x′, y′, z′) and the variables r′ =

√
x′2 + y′2

and ϕ′ = arg(y′/x′), the current density of a cylindrical layer with radius r0 from
z1 to z2 can then be written as

j(x′) = j0


 − sin ϕ′

cos ϕ′

0


 δ(r′ − r0)f(z′; z1, z2) (3.2)

with f(z′; z1, z2) =

{
1 z1 ≤ z′ ≤ z2

0 else
.

Inserting this into eq. (3.1) and setting r = 0 we get the magnetic field of a layer
on the axis of the tube:

B(r = 0, z) =
µ0

2
j0ûz

∫ z2

z1

r2
0

[r2
0 + (z − z′)2]3/2

dz′ =
µ0

2
j0ûz

z − z′√
r2
0 + (z − z′)2

∣∣∣∣∣
z′=z1

z′=z2

.

(3.3)
ûz is the unit vector in the z-direction.
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Section 3: Design and simulation of the slower

Off-axis the magnetic field has also a radial component and its absolute value
is higher. Note that the calculation of these fields involves elliptic integrals and
cannot be simply evaluated analytically. The total magnetic field is obtained by
summing over all the layers.

3.2 Current configuration for the solenoid

Since it is desirable to use the same power supply for the all the layers — except
for the bias coils which need a higher current — we defined a fixed current density.
In order to get a smooth increasing field, each layer in the design was basically
divided into three parts. With increasing z, we assigned the quarter of the current
density to the first part, half of it to the second part and its full value to the last
one. We would then just wind the coils with the corresponding spacing between
two loops to be able to use one single wire. This scheme is illustrated in Fig. 3.1.
The positions and currents of the layers are adjusted to fit as precisely as possible
the curve described by eq. (2.15). The final design of the solenoid consisted of two
bias field layers and 13 layers.

bias field layers tapered field layers

CF-40 vacuum tube

full current density
half current density
quarter current density

alignment ring

compensation coil

Figure 3.1: Scheme for the current densities in the coil layers of the
Zeeman slower.

At the end of the slower an additional coil is mounted with the purpose of
compensating the magnetic field and its gradient in the MOT region of our ex-
perimental setup, 14 cm away from the end of the slower. Apart from that, the
compensation coil also helps the field to fall off quickly at the end. In our experi-
mental setup the Zeeman slower is mounted perpendicular to the magnetic guide
for optimal loading of the elongated magneto-optical trap. We noticed that in this
configuration the MOT was hardly by the magnetic field produced by the Zeeman
slower.
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Section 3: Design and simulation of the slower

The field profile of our solenoid and its deviations from the ideal curve are
plotted in Fig. 4.1 and 4.2. To get an idea of the quality of the magnetic field
profile we allowed an error of 1 · h

µB
MHz from the theoretical curve with the laser

intensity of the unfocused beam. Towards the beginning of the slower the increasing
light intensity of the focused beam (see below) can compensate partially for any
deviations in the magnetic field (eq. (2.2)). Fig. 4.2 also shows the allowable
error range for the magnetic field when we want to keep the saturation parameter
constant. The field values are within the margin along the entire profile.

3.3 Simulation of the atoms’ motion

A first test for the designed field profile consisted in the simulation of the atom’s
movement inside the Zeeman slower. For this purpose the equation of motion (2.1)
was numerically solved, where B(z) specified the detuning δ (eq. (2.14)) in the
saturation parameter given by eq. (2.2).

The slowing laser beam had an initial size of 3 cm diameter at the end of the
slower and was focused to 1.5 m away [17]. This provides some transverse cooling
for the atoms and reduces the divergence of the atomic beam [10, 11]. To include
this effect in the simulation, the light intensity was set to

I = I0exp


− 2r2

ω2
0

[
1 +

(
λz

πw2
0

)2
]



(
1.5 m

z

)2

, (3.4)

where ω0 is such that at z = 1.5 m the beam size is 3 cm (origin of z-axis at
slower entrance and z increasing towards slower end). We designed the magnetic
field profile for a deceleration a ≈ 2

3
amax which requires a laser beam intensity

I/I0 = 2.6 (compare eq. (2.2)). Setting the laser detuning δ0 = −2π · 630 G we
adjusted the capture velocity of the atoms to about 380 m/s. The end velocity is
then determined by the difference in the magnetic field between the end and the
beginning of the slower. In our design this value was 340 Gauss, leading to an end
velocity of about 20 m/s.

Fig. 3.2 shows the atoms’ velocity v(z) and the actual detuning δ(z) in function
of their position z. This data was obtained using the real (experimental) magnetic
field produced by the solenoid (see section 4) in the simulation. If the criterium
(2.17) was not fulfilled at some point, one would see a breakthrough in the plots.
The atom would not be decelerated any longer and the detuning would suddenly
rise because the atoms could not follow the magnetic field. Too low light intensity
has the same effect.

To estimate the influence of the higher magnetic field and lower laser intensity
off-axis we also simulated the atoms’ motion 15 mm away from the center of the
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Section 3: Design and simulation of the slower
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Figure 3.2: Simulation using the final experimental B field produced by the slower.
(a) Evolution of the atoms velocity along the slower. (b) The laser’s detuning from
the actual atomic resonance along the slower.

tube. With the same parameters as above the atoms were still decelerated without
any breakthrough to a final velocity only a few m/s lower than on-axis.

3.4 Characteristics of the designed slower

We give a summary of the parameters and characteristics of the simulated Zeeman
slower:

length 1.1 m
bias field (initial field) 250 G
final magnetic field 590 G
laser detuning -880 MHz
laser intensity 2.6 I/I0

beam waist 30 mm
capture velocity 380 m/s
end velocity 20 m/s

Please note that some of these designed characteristics differ from the definitive
values of the actual slower. The corresponding experimental data is given in section
6.
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4 Building the slower

This section describes the practical realization of the Zeeman slower and gives an
overview of the used material.

4.1 The vacuum tube and the wire

A 1.20 m long CF-40 vacuum tube was used to integrate the slower in our vacuum
system. The inner diameter of 38 mm allows the use of a slowing beam with a
sufficiently large waist. The efficient magnetic field profile extends over a length
of 1.1 m which is longer than the minimal requirement (see section 2). This allows
the field to be less steep which makes the slower less sensitive to field deviations,
or — in the perfect case — to increase the capture range. Before winding the
solenoid an electrically isolating spray was applied along the entire vacuum tube
to avoid electric contact to any un-isolated parts of the current carrying wire.

To build the coils producing the bias field a copper tube wire with an inner
(outer) diameter of 3 (4) mm was used. This allows water cooling the coils which
would heat up remarkably with the amount of current we let pass. Since we
wanted to implement a bakable Zeeman slower the tube wire was isolated with
high temperature teflon heat shrink sleeves (Pro Power multicomp STFE4 6.4
CLR). The specified shrink factor of 4 was a bit too high for our purpose, so slow
and uniform heating in an oven was necessary in order to make the sleeves shrink
the right amount (i.e. the temperature in the oven was increased with a rate of 1
◦C/min).

The coil layers for the tapered field were wound with standard capton-isolated
(bakable) copper wire of a diameter of 1.8 mm. Using wire with a squared cross
section would have been advantageous. It prevents the wire loops from slipping
between the larger copper tubes of the bias layer below. The winding would be
more homogeneous and accurate. This type of wire, however, was not easy to
obtain at the time yet.

4.2 Winding the coils

A turning lathe in our workshop facilitated the winding of the coils. The clamped
CF-40 tube could be wound just by holding the wire tight while it was turning.
An aluminium plate perpendicular to the tube was mounted at its end to align
the wires at the end of the layers. The two layers for the bias field were built
with separate tube wires to be able to cool them in parallel. The current circuit,
however, was in series. At both ends the coils were provisionally fixed with collars
which were separated from the layers by a teflon band. Finally, the bias field coils
were covered with a 0.2 mm thick copper sheet, fixed with epoxy to provide an
even ground to wind the remaining coils consisting of thinner wire.
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Section 4: Building the slower

radius [mm] positions of layers with quarter, half and full current density [mm]
28.9 , , 190, 239 239, 265 265, 304 304, 1143
30.7 370, 393 412, 491 491, 504 504, 521 521, 545 545, 1143
32.5 370, 393 , , 412, 491 491, 637 637, 1143
34.3 , , , 674, 741 741, 800 800, 1143
36.1 , , , 674, 741 741, 861 861, 1143
37.9 , , , 881, 919 919, 956 956, 1143
39.7 , , , 881, 919 919, 998 998, 1143
41.5 , , , , 1030, 1067 1067, 1143
43.3 , , , , 1030, 1067 1067, 1143
45.1 , , , , , 1073, 1143
46.9 , , , , , 1073, 1143
48.7 , , , , , 1077, 1143
50.5 , , , , , 1077, 1143

Table 4.1: Loop radii and (start, end) positions of the coil layers (only bias
field corrected), measured from the outer side of the entrance flange.

Table 4.2 shows the data of the coils producing the tapered magnetic field. To
wind the layers with half of the nominal current density a second wire was wound
at the same time, keeping the correct spacing between the current carrying loops.
All layers consist of one single piece of wire. Therefore the winding helicity of a coil
would be opposite to the one of the layer underneath it. At some places the wire
would then slip into the gap between two wires below, resulting in an irregular and
totally reduced loop density. By adjusting the remaining layers in the simulation
appropriately we could correct these errors. Finally, another series of correction
loops was added after measuring the total field produced as described below. The
positions and current densities of the those layers are summarized in table 4.2.
The thin wire was provisionally fixed with cable ties which later were replaced by
wire straps. A way around the irregular slipping problem would be to use wire
with a squared cross section.

radius [mm] positions of layers with full and third current density [mm]
28.9 125, 150 25, 75 , ,
30.7 230, 239 283, 298 , ,
34.3 375, 385 455, 475 530, 541 605, 655
37.9 715, 720 790, 800 832, 845 ,
41.5 893, 910 953, 970 1005, 1035 ,
45.1 1035, 1050 , , ,

Table 4.2: Loop radii and (start, end) positions of the additional correction
layers, measured from the outer side of the entrance flange.
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Section 4: Building the slower

The magnetic field produced by the solenoid was measured using a Hall probe.
For this purpose the following currents were supplied: 41 A for the bias coils, 4
A for the tapered field coils and 37 A for the compensation coil. The results are
plotted in Fig. 4.1. Fig. 4.2 shows the deviations from the theoretical field profile.

4.3 The cold finger

At the slower entrance a cylindrical copper piece acting as a cold finger is concentri-
cally mounted inside the vacuum tube to provide further pumping. Transversally
moving Rubidium atoms which hit the cylinder remain stuck to its walls. Cool-
ing the cylinder to −20 ◦C is accomplished from outside the vacuum by thermal
conduction of a ceramic-insulated feed-through piece (usually used for electric cur-
rent). Connected to it is a copper block cooled by two 60 W Peltier elements
in series. Heating of the opposite sides of the Peltier elements is limited by the
contact with another, water cooled, copper block.
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Figure 4.1: Measured magnetic fields of the Zeeman slower before and
after corrections.
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Figure 4.2: Deviations of the measured magnetic field from the theo-
retical profile. The errors are within the range as discussed in section
3.
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5 The (recirculating) Rubidium oven

With the implementation of a Zeeman slower in our experimental setup we also
introduced a new Rubidium source to provide a high load of atoms. This section
describes the recirculating oven which replaces the former room temperature gas
chamber. To get more insight into the subject of atomic beam sources, please
consult the references [18] and [19].

5.1 The setup

The atom beam source consists mainly of three different chambers as shown in
Fig. 5.1. The first one is the oven containing the Rubidium source at its bottom.
It is heated at four different points to produce the desired vapor pressure and
particle flux. The atoms leave the oven through an aperture A1 (4 mm diameter)
and enter the second chamber. They are then collimated by a second aperture A2

(7.8 mm diameter) to form a beam. The third chamber is terminated by another
aperture A3 (8.5 mm diameter) which improves the collimation. Atoms with high
transverse velocities are stuck in the second chamber. Its walls are covered with a
gold coated stainless steel mesh which gets wetted by the Rubidium. Our hope is
that these ”lost” atoms are recirculated by a tube leading back to the bottom of
the oven which should increase the oven’s lifetime considerably.

Rubidium has a melting point of 38.9 ◦C and is highly reactive, in particular
with oxygen. Before putting the Rubidium the oven was vented with hydrogen in
order not to contaminate it with air. To fill the oven chamber with Rubidium we
cooled the ampuls in liquid Nitrogen before breaking them up on one side and put
them upside down into the oven tube. This prevents any violent reactions with
oxygen contained in the air. One usually fills 10 to 20 g (one or two ampuls).
When heating up, the Rubidium becomes liquid and drops to the bottom of the
oven while the empty ampuls remain in the upper part of the tube (Fig. 5.1).

5.2 Expected performance of the atom beam source

The vapor pressure for Rubidium at a given temperature T in the oven chamber
is given by the following Antoine equation [20]:

log10 Psat[Pa] = 9.318 − 4040

T [K]
∗. (5.1)

For an ideal gas the particle density n is determined with

Psat = nkBT. (5.2)

∗The Antoine equation is an empirical extension to the Clausius-Clapeyron equation T dPsat

dT =
l

∆v ≈ l
vgas

, where l and ∆v = vgas − vfluid are the latent heat and the volume difference.
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Section 5: The (recirculating) Rubidium oven
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Figure 5.1: The atomic beam source, consisting of a re-
circulating oven and collimators, and its dimensions. The
Peltier element serves as an additional Rb pump.

To illustrate the importance of the recirculation we compare the particle flux
out of the oven chamber with the one after the collimation. The derivation of these
quantities is done in appendix A. The results are as follows (notation as in Fig.
5.1):

Φ0 =
1

4
nA1v̄, (5.3)

the flux out of the oven chamber, and

Φc =
nA1A3v̄

4πd2
, (5.4)

the flux of the collimated beam. Both depend directly on the oven temperature
through v̄ = (8kBT

πm
)1/2. In our setup the distance between A1 and A3 is d = 20.4

cm, so the atomic beam only contains Φc/Φ0 = A3/πd2 ≈ 0.2% of the atoms that
leave the oven. In other words, recirculation can in principle increase the oven’s
lifetime by a factor 500.
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Section 5: The (recirculating) Rubidium oven

Temperature [ C] Pressure [Pa] Pressure[Torr] Density [m-3] Beam velocity [m/s] Flux of 87Rb [at/s] Lifetime of 1g [h]

100 3,10E-02 2,33E-04 6,02E+18 356 8,17E+11 338

110 5,94E-02 4,47E-04 1,12E+19 360 1,55E+12 179

120 1,10E-01 8,28E-04 2,03E+19 365 2,83E+12 98

130 1,98E-01 1,49E-03 3,56E+19 370 5,03E+12 55

140 3,46E-01 2,60E-03 6,07E+19 374 8,68E+12 32

150 5,90E-01 4,43E-03 1,01E+20 379 1,46E+13 19

160 9,79E-01 7,36E-03 1,64E+20 383 2,40E+13 12

170 1,59E+00 1,20E-02 2,60E+20 387 3,85E+13 7

180 2,53E+00 1,90E-02 4,04E+20 392 6,05E+13 5

190 3,94E+00 2,96E-02 6,16E+20 396 9,32E+13 3

200 6,02E+00 4,53E-02 9,22E+20 400 1,41E+14 2

210 9,04E+00 6,80E-02 1,36E+21 405 2,09E+14 1

220 1,34E+01 1,00E-01 1,96E+21 409 3,06E+14 1

230 1,94E+01 1,46E-01 2,80E+21 413 4,41E+14 1

240 2,79E+01 2,10E-01 3,93E+21 417 6,27E+14 0

250 3,94E+01 2,96E-01 5,46E+21 421 8,77E+14 0

260 5,50E+01 4,14E-01 7,48E+21 425 1,21E+15 0

270 7,58E+01 5,70E-01 1,01E+22 429 1,66E+15 0

280 1,03E+02 7,77E-01 1,35E+22 433 2,24E+15 0

290 1,39E+02 1,05E+00 1,79E+22 437 2,99E+15 0

300 1,86E+02 1,40E+00 2,35E+22 441 3,95E+15 0

Pressure, density and flux for rubidium in function of T

Table 5.1: Calculated data for our Rubidium source(85Rb and 87Rb). The
flux after collimation is given. Note that the indicated oven lifetime is valid
for a non-recirculating oven.

5.3 Temperature control

From eq. (5.2) and (5.3) we deduce Φ ∼ Psat

T
. Table 5.1 lists oven pressure, density,

velocity, flux and lifetime in function of the temperature. While a conventional
oven at usual operating condition has a lifetime of about 800 hours, our oven —
if it recirculates — is expected to operate for at least one year without refilling of
Rubidium.

To control the atomic flux out of our oven, we use four heating tapes, ther-
mocouplers and PID temperature controllers (Omega CN1166-DC1). Thermal
isolation is improved by a fiber glass cord wound around the oven chamber. The
oven temperature T1 is typically kept between 120 and 160 ◦C, whereas the re-
maining three heating points T2, T3 and T4 are 30 ◦C above the value of T1 (Fig.
5.1). This prevents the Rubidium from sticking to the oven walls.
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6 Testing and characterization

In the following paragraphs I describe our experimental setup to test and charac-
terize the Zeeman slower and present the results of our measurements.

6.1 Setup and Probing

The recirculating Rb oven described in the previous section served as our atomic
beam source for our slower. For the measurements presented here the oven tem-
perature was set to T1 = 160 ◦C. This corresponds to a mean velocity of v̄jet

z =
(9πkBT/8m)1/2 = 380 m/s and a mean velocity spread of ∆vjet

z = 145 m/s (see
Appendix A.3). T2, T3 and T4 were kept at 190 ◦C. Our vacuum system had a
pressure of 10−8 Torr at the time of the measurements. It must be mentioned
that we still had not baked out the slower tube at this point. This way we could
leave the provisional (un-bakable) cable ties which fixed the wire on the tube and
eventually move the wire loops for any corrections.

The coils of the Zeeman slower are powered as follows: bias field coils 49 A,
tapered field coils 5 A and compensation coil 42 A.

All our light sources consist of diode lasers. The frequency of the slowing beam
is detuned by an amount of δ0 = −880 MHz to the cycling transition by means of
acousto-optical modulators (AOMs). For the repumper we choose a detuning of
−115 MHz, a value which is determined experimentally by optimizing the loading
rate of the magneto-optical trap. Only the slowing laser is frequency-locked using
RF modulation spectroscopy [21]. Slowing and repumping light are mixed and
injected into a tapered amplifier (Toptica TA 100) to enhance the power. In
principle we were able to get 400 mW out of the TA. However, it resulted that in
this case the repumping light was hardly amplified and contributed only as a tiny
fraction to the total output power. We finally ended up with an output of totally
170 mW which is fed into a glass fiber and σ−-polarized. At the 14-way-cross
vacuum chamber, where the beam enters the slower, it has a maximal intensity of
9 mW/cm2 corresponding to 5I0 and a profile with a 1/e2- diameter of 20 mm.

We detect the atoms at the exit of the Zeeman slower by measuring the absorp-
tion of weak a probing laser beam whose frequency is scanned over the transition
of interest. With probe beams perpendicular and an angle of 45◦ to the slower
axis we are able to obtain Doppler free absorption spectra as well as information
about the axial velocity distribution.

6.2 Determination of the atomic flux

An incident light beam of intensity Iin suffers absorption by atoms. We assume
this beam to be weak in intensity (I 	 I0) so that the atoms’ absorption does not
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Figure 6.1: Experimental setup to test the Zeeman slower. The slowed atoms
are probed in a 14-way-cross vacuum chamber which will later serve as a cham-
ber for the 2D-MOT.

saturate. The transmitted intensity Itr is then given by

Itr = IinT̂ = Iine
− ∫ ∞

−∞ n(x)σdx, (6.1)

where n(x) is the particle density per unit volume at a location x and σ the cross
section. The integral is to be taken along the path of the laser beam. The optical
density is defined as the negative exponent of the transmission coefficient T̂ :

D = − log T̂ =

∫ ∞

−∞
n(x)σdx ≈ nσl. (6.2)

The approximation is valid when the density n does not vary a lot over the distance
l where the beam interacts with the atoms. The flux of an atomic beam with mean
velocity v reads

Φ = n
πl2

4
v =

πl

4σ
Dv. (6.3)

The cross section for scattering resonant light of wavelength λ is given by σ ≈
λ2/2π (cycling transition, linear polarization). By measuring the absorption one
can calculate the optical density and determine the atomic flux. Absorption peaks
of a gas usually show various enlargement effects, as Doppler or power broadening,
which have to be taken into account. Given that the number of detected atoms
is not changed, the surface below the absorption peak with or without broadening
effects is the same. Thus, as an approximation the ratio of the height of the un-
broadened absorption peak to the broadened one is the inverse of the ratio of their
full widths of half maximum, ∆ν/Γ with Γ = 5.9 MHz.

The absorption profile obtained with the 45◦ probe is plotted in Fig. 6.2. We
measured an absorption of 1 − T̂ = 1.27% at a frequency shifted by ∆ν45◦ = 20
MHz with respect to the Doppler free spectrum. The velocity of the slowed beam
is given by v = λ∆ν45◦/ cos 45◦ = 22 m/s. This corresponds to an atomic flux of

Φ = 1.8 · 1011at/s (6.4)
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Figure 6.2: Typical absorption spectra of the atoms coming out of the
slower. The three transitions from |F = 2〉 to |F ′ = 1〉, |F ′ = 2〉 and
|F ′ = 3〉 can be identified. The atoms’ velocity is determined by the
frequency difference between two corresponding peaks.

at the exit of the Zeeman slower (l = 3 cm). The total broadening of the absorption
peak of 17 MHz gives us an upper limit for the slow atoms’ velocity spread: ∆v <
19 m/s.

Reducing the bias field over a quite wide range does not affect the flux. This
is not surprising since our usual bias field value of 250 G is much higher than the
field of 120 G where the critical level crossing is situated (see paragraph 2.5). After
a fine adjustment of the parameters and alignment of the slowing beam we were
able to obtain a flux of about 5 · 1011 at/s (5% absorption, T1 = 140 ◦C, v = 16
m/s) in a later measurement.

6.3 Temperature and light dependency

We measure the flux out of the slower in function of the oven temperature and of
the slowing light intensity. The results are plotted in Fig. 6.3 and 6.5.

By probing the atomic beam at 90◦ with the decelerating laser beam off we
are able to measure the total flux (including un-slowed atoms). The ratio between
the total and the slowed flux corresponds to the capture efficiency. In Fig. 6.4
this quantity is plotted in dependance of the oven temperature. As expected, for
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Figure 6.3: Measured fluxes in function of the oven temperature.

high temperatures the capture efficiency decreases slightly because of the chang-
ing velocity distribution of the atoms. According to eq. (A.10) of the appendix
the portion of atoms with a velocity below the capture velocity of the slower is
calculated as:

pcapt =

∫ vcapt

0
dvzv

3
z exp(− mv2

z

2kBT
)∫ ∞

0
dvzv3

z exp(− mv2
z

2kBT
)

. (6.5)

For vcapt = 380 m/s this quantity varies between 66% and 52% for an oven tem-
perature between 60 ◦C and 160 ◦C. The measured capture efficiency as plotted in
Fig. 6.4 varies slowly around a value of 13%. This result is quite satisfying consid-
ering the additional atom loss due to transverse heating (see paragraph 2.2). Slight
changes in the polarization of the slowing beam did not show remarkable effects.
Also, the slower works well without repumping light (see section 2), although it
helps as one sees when optimizing its frequency detuning for the MOT loading.

6.4 Final velocity of the slowed atoms

The slowing laser beam is detuned from the atomic resonance by means of an
acousto-optical modulator (AOM). The frequency offset is adjusted by chang-
ing the voltage of the voltage-controlled oscillator (VCO) which drives the AOM
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Figure 6.4: The capture efficiency of the Zeeman slower in function of
the oven temperature.

through an RF-amplifier. Fig. 6.6 shows the measured mean velocity of the atoms
leaving the slower as a function of the detuning. The continuous line represents a
linear fit with free parameters to the experimental data points. The dashed line
is a fit with a slope fixed at the theoretical value of λ = 0.78 m/s/MHz. The
steeper than expected slope seems to fit well for lower velocities which could be
due to off-resonant scattering. Slow atoms at the end of the Zeeman slower are
more affected since they stay close to resonance for a longer time.
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Figure 6.5: Measured flux in function of the slowing beam intensity.
Please note that this data was obtained with a configuration which differs
from the current one: The repumping light was not amplified in the
MOPA together with the cycling light at the time yet.
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Figure 6.6: Final velocity of the slowed atomic beam as a function of
the detuning of the slowing light from the atomic resonance. The dots
represent the experimental data, the lines are linear fits. For the dashed
line the slope was fixed at λ = 0.78 m/s/MHz.
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7 Summary and Conclusions

In this article I have described the theory, design and building of a Zeeman slower
for 87Rb.

The implemented increasing field slower shows excellent performance. It pro-
vides a flux of the order of 1011 at/s at a final velocity of the order of 10 m/s
which allows to load efficiently our magneto-optical trap. Together with the new
(recirculating) oven, we have thus implemented an outstanding atomic source to
inject the magnetic guide. Compared with the old setup, this makes the current
status of the atom laser experiment very promising. Indeed, evidence for collisions
between the atoms in the guide has been detected recently.

31



32



Section A: Particle flux and mean velocity of an atomic beam

A Particle flux and mean velocity of an atomic

beam

A.1 Flux out of an oven

Consider a thermal gas with density n and temperature T contained in a box with
a round aperture of area A (Fig. A.1 (a)). Here we treat the case where the
mean free path of the atoms is much bigger than the size of the aperture (effusive
regime). The number of particles per unit time passing through the aperture is
then given by

Φ0 = A

∫
vz>0

d3vvzf(v) (A.1)

where

f(v) = n

(
m

2πkBT

)3/2

exp

(
− mv2

2kBT

)
(A.2)

is the Maxwell-Boltzmann velocity distribution [22] with the normalization
∫

d3vf(v) =
n. Note that for the velocity component in the z direction, perpendicular to A,
we have the condition vz > 0 since only those particles pass through the hole. The
straightforward calculation of the integral gives

Φ0 =
1

4
nAv̄, (A.3)

where v̄ = 〈v〉 =
∫

d3vf(v)v∫
d3vf(v)

=
√

8kBT
πm

is the average velocity of the 3D Boltzmann
gas.

A

n, T

A

n, T
n, T

A

z

A

z

(a) (b)

d

Figure A.1: Atoms (a) coming out of an oven, and (b) after collima-
tion.

A.2 Flux of a collimated beam

We now calculate the flux of the collimated atomic beam. The additional round
aperture A′ (Fig. A.1 (b)) will reduce the flux obtained in the previous paragraph.
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Section A: Particle flux and mean velocity of an atomic beam

The transverse velocity components (parallel to the area A′) are limited by the
condition v⊥/vz < (A′/πd2)1/2, where d is the distance between the apertures A
and A′. We thus calculate the integral

Φc = A

∫
vz>0,v⊥<vz( A′

πd2 )
1
2

d3vvzf(v) =
1

4
nA

A′

A′ + πd2
v̄. (A.4)

Since A′ 	 πd2 the flux of the atomic beam after collimation reads

Φc ≈ nAA′v̄
4πd2

. (A.5)

A.3 Mean velocity of an atomic beam

Whereas the number of particles contained in a box is conserved, in the case of a
beam it depends linearly on time. Consider a collimated particle beam as in the
previous paragraph. The number of particles having a velocity between vz and
vz + dvz in the beam at a time t (at t = 0 the aperture A is opened) is given by

dN = Avztf(vz)dvz, (A.6)

where f(vz) is the Maxwell-Boltzmann distribution f(v) integrated over the trans-
verse velocity components v⊥ as above. The average velocity in the direction of
the beam z is thus calculated as

v̄jet
z ≡ 〈vz〉jet =

∫ ∞
0

dNvz∫ ∞
0

dN
=

∫ ∞
0

dvzf(vz)v
2
z∫ ∞

0
dvzf(vz)vz

. (A.7)

Applying again the approximation A′ 	 πd2 one receives

v̄jet
z ≈

√
9πkBT

8m
. (A.8)

We also calculate the standard deviation from this mean value,

∆vjet
z =

√
〈v2

z〉jet − (〈vz〉jet)2 = ∆vjet
z ≈

√
2kBT

m

(
2 − 9

16
π

)
. (A.9)

Note that in the above approximation one finds the dependence f(vz) ∝ v2
z exp(− mv2

z

2kBT
)

for the longitudinal velocity distribution. In general, the mean value of a quan-
tity B(vz) depending only on the longitudinal velocity component is thus simply
calculated as

〈B(vz)〉 =

∫ ∞
0

dvzB(vz)f(vz)vz∫ ∞
0

dvzf(vz)vz

=

∫ ∞
0

dvzB(vz)v
3
z exp(− mv2

z

2kBT
)∫ ∞

0
dvzv3

z exp(− mv2
z

2kBT
)

. (A.10)
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